Part Number Hot Search : 
Q67006 SP78LXX IN74HC 68HC705 00500 CY7C6 LBN12006 IN74HC
Product Description
Full Text Search
 

To Download ACNW3190 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ACNW3190 5.0 amp high output current igbt gate drive optocoupler data sheet description the ACNW3190 contains an algaas led, which is optically coupled to an integrated circuit with a power output stage. this optocoupler is ideally suited for driving power igbts and mosfets used in motor control inverter appli - cations. the high operating voltage range of the output stage provides the drive voltages required by gate con - trolled devices. the voltage and high peak output current supplied by this optocoupler make it ideally suited for direct driving igbts with ratings up to 1200v/200 a, 600 v/300 a. for igbts with higher ratings, the ACNW3190 can be used to drive a discrete power stage which drives the igbt gate. the ACNW3190 has the highest insula - tion voltage of v iorm =1414 vpeak in the iec/ en/din en 60747-5-2. functional diagram features ? 5.0 a maximum peak output current ? 15 kv/s minimum common mode rejection (cmr) at v cm = 1500 v ? 0.5 v maximum low level output voltage (v ol ) eliminates need for negative gate drive ? i cc = 5 ma maximum supply current ? under voltage lock-out protection (uvlo) with hysteresis ? wide operating v cc range: 15 to 30 volts ? 500 ns maximum switching speeds ? industrial temperature range: -40 c to 100 c ? safety approval ul recognized 5000 v rms for 1 min. csa approval iec/en/din en 60747-5-2 approved v iorm = 1414 v peak applications ? igbt/mosfet gate drive ? ac/brushless dc motor drives ? industrial inverters ? switch mode power supplies 1 3 shiel d 2 4 8 6 7 5 n/ c ca thode anode n/c v cc v ee v o v ee truthftable ledf v cc f-fv ee f positivefgoingf (i.e.,fturn-on)f v cc f-fv ee negativefgoingf (i.e.,fturn-off)f vof off 0 - 30 v 0 - 30 v low on 0 - 11 v 0 - 9.5 v low on 11 - 13.5 v 9.5 - 12 v transi - tion on 13.5 - 30 v 12 - 30 v high a 0.1 f bypass capacitor must be connected between pins 5 and 8. caution: it is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by esd. lead (pb) free rohs 6 fully compliant rohs 6 fully compliant options available; -xxxe denotes a lead-free product
 ordering information ACNW3190 is ul recognized with 5000vrms for 1 minute per ul1577. partfnumber option package surface f mount gullf f wingf tape f &freel iec/en/dinf f enf60747-5-2 quantity rohsfcompliant ACNW3190 -000e 400mil dip-8 x 42 per tube -300e x x x 42 per tube -500e x x x x 750 per reel to order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. example 1: ACNW3190-500e to order product of 400mil dip gull wing surface mount package in tape and reel packaging with iec/en/din en 60747-5-2 safety approval in rohs compliant. example 2: ACNW3190-000e to order product of 400mil dip package in tube packaging and rohs compliant. option datasheets are available. contact your avago sales representative or authorized distributor for information.
 ACNW3190 gull wing surface mount option 300 outline drawing 1.00 0.15 (0.039 0.006) 7 nom. 12.30 0.30 (0.484 0.012) 0.75 0.25 (0.030 0.010) 11 .00 (0.433) 5 6 7 8 4 3 2 1 11 .15 0.15 (0.442 0.006) 9.00 0.15 (0.354 0.006) 1.3 (0.051) 13.56 (0.534) 2.29 (0.09) land pa ttern recommenda tion 1.78 0.15 (0.070 0.006) 4.00 (0.158) max. 1.55 (0.061) max. 2.54 (0.100) bsc 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) max. package outline drawings 5 6 7 8 4 3 2 1 11 .15 0.15 (0.442 0.006) 1.78 0.15 (0.070 0.006) 5.10 (0.201) max. 1.55 (0.061) max. 2.54 (0.100) typ . 7 typ . 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) 11 .00 (0.433) 9.00 0.15 (0.354 0.006) max. 10.16 (0.400) typ . a hcnwxxxx yyww da te code type number 0.51 (0.021) min. 0.40 (0.016) 0.56 (0.022) 3.10 (0.122) 3.90 (0.154) ACNW3190 outline drawing (8-pin wide body package) dimensions in inches (millimeters) note: floating lead protrusion is 0.25 mm (10 mils) max.
 solder refow temperature profle recommended pb-free ir profle 0 t i m e ( s e c o n d s ) t e m p e r a t u r e ( c ) 2 0 0 1 0 0 5 0 1 5 0 1 0 0 2 0 0 2 5 0 3 0 0 0 3 0 s e c . 5 0 s e c . 3 0 s e c . 1 6 0 c 1 4 0 c 1 5 0 c p e a k t e m p . 2 4 5 c p e a k t e m p . 2 4 0 c p e a k t e m p . 2 3 0 c s o l d e r i n g t i m e 2 0 0 c p r e h e a t i n g t i m e 1 5 0 c , 9 0 + 3 0 s e c . 2 . 5 c 0 . 5 c / s e c . 3 c + 1 c / ? 0 . 5 c t i g h t t y p i c a l l o o s e r o o m t e m p e r a t u r e p r e h e a t i n g r a t e 3 c + 1 c / ? 0 . 5 c / s e c . r e f l o w h e a t i n g r a t e 2 . 5 c 0 . 5 c / s e c . n o t e : n o n - h a l i d e f l u x s h o u l d b e u s e d . 2 1 7 c r a m p - d o w n 6 c / s e c . m a x . r a m p - u p 3 c / s e c . m a x . 1 5 0 - 2 0 0 c * 2 6 0 + 0 / - 5 c t 2 5 c t o p e a k 6 0 t o 1 5 0 s e c . 1 5 s e c . t i m e w i t h i n 5 c o f a c t u a l p e a k t e m p e r a t u r e t p t s p r e h e a t 6 0 t o 1 8 0 s e c . t l t l t s m a x t s m i n 2 5 t p t i m e t e m p e r a t u r e n o t e s : t h e t i m e f r o m 2 5 c t o p e a k t e m p e r a t u r e = 8 m i n u t e s m a x . t s m a x = 2 0 0 c , t s m i n = 1 5 0 c n o t e : n o n - h a l i d e f l u x s h o u l d b e u s e d . * r e c o m m e n d e d p e a k t e m p e r a t u r e f o r w i d e b o d y 4 0 0 m i l s p a c k a g e i s 2 4 5 c
5 tablef1.fiec/en/dinfenf60747-5-2finsulationfcharacteristics* description symbol characteristic unit installation classifcation per din vde 0110/1.89, table 1 for rated mains voltage 150 v rms for rated mains voltage 300 v rms for rated mains voltage 450 v rms for rated mains voltage 600 v rms for rated mains voltage 1000 v rms i C iv i C iv i C iv i C iv i C iii climatic classifcation 55/100/21 pollution degree (din vde 0110/1.89) 2 maximum working insulation voltage v iorm 1414 v peak input to output test voltage, method b** v iorm x 1.875=v pr , 100% production test with t m =1 sec, partial discharge < 5 pc v pr 2652 v peak input to output test voltage, method a** v iorm x 1.5=vpr, type and sample test, t m =60 sec, partial discharge < 5 pc v pr 2121 v peak highest allowable overvoltage (transient overvoltage t ini = 10 sec) v iotm 8000 v peak safety-limiting values C maximum values allowed in the event of a failure, also see figure 2. case temperature input current output power t s i s, input p s, output 150 400 800 c ma mw insulation resistance at t s , v io = 500 v rs 10 9 f * isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. surface mount classifcation is class a in accordance with ceccoo802. ** refer to the optocoupler section of the isolation and control components designers catalog, under product safety regulations section iec/en/ din en 60747-5-2, for a detailed description of method a and method b partial discharge test profles. 0 25 50 75 10 0 125 15 0 175 100 0 90 0 80 0 70 0 60 0 50 0 40 0 30 0 20 0 10 0 t s ? c as e te mp er at ur e ? c p s ? p ow er ? m w, i s ? i np ut curre nt ? m a p s, ou tp ut i s, in pu t 0 p s, output i s, input dependence of safety limiting values on temperature regulatory information the ACNW3190 is approved by the following organiza - tions: iec/en/din en 60747-5-2 approval under: iec 60747-5-2 :1997 + a1:2002 en 60747-5-2:2001 + a1:2002 din en 60747-5-2 (vde 0884 teil 2):2003-01 ul approval under ul 1577, component recognition program up to v iso = 5000 v rms expected prior to product release. file e55361. csa approval under csa component acceptance notice #5, file ca 88324 expected prior to product release. note: the thermal derating graph above is in relation to figure 30 and figure 31 and s = 2cm.
 tablef2.finsulationfandfsafetyfrelatedfspecifcations parameter symbol ACNW3190 units conditions minimum external air gap (clearance) l(101) 9.6 mm measured from input terminals to output terminals, shortest distance through air. minimum external tracking (creepage) l(102) 10.0 mm measured from input terminals to output terminals, shortest distance path along body. minimum internal plastic gap (internal clearance) 1.0 mm through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector. tracking resistance (comparative tracking index) cti >200 v din iec 112/vde 0303 part 1 isolation group iiia material group (din vde 0110, 1/89, table 1) tablef3.fabsolutefmaximumfratings parameter symbol min. max. units note storage temperature t s -55 125 c operating temperature t a -40 100 c output ic junction temperature t j 150 c average input current i f(avg) 25 ma 1 peak transient input current (<1 s pulse width, 300pps) i f(tran) 1.0 a reverse input voltage v r 5 v high peak output current i oh(peak) 5.0 a 2 low peak output current i ol(peak) 5.0 a 2 total output supply voltage (v cc - v ee ) -0.5 35 v input current (rise/fall time) t r(in) / t f(in) 500 ns output voltage v o(peak) -0.5 v cc v output ic power dissipation p o 800 mw 3 total power dissipation p t 850 mw 4 lead solder temperature 260c for 10 sec., 1.6 mm below seating plane solder refow temperature profle see package outline drawings section tablef4.frecommendedfoperatingfconditions parameter symbol min. max. units note operating temperature t a - 40 100 c output supply voltage (v cc - v ee ) 15 30 v input current (on) i f(on) 10 16 ma input voltage (off) v f(off) - 3.6 0.8 v
 tablef5.felectricalfspecifcationsf(dc) unless otherwise noted, all typical values are at t a = 25c, v cc - v ee = 30 v, v ee = ground; all minimum/maximum speci - fcations are at recommended operating conditions (t a = -40 to 100c, i f(on) = 10 to 16 ma, v f(off) = -3.6 to 0.8 v, v cc = 15 to 30 v, v ee = ground) parameter symbol min. typ. max. units testfconditions fig. note high level output current i oh 1.0 2.75 a v o = v cc - 4 2, 3, 17 5 4.0 a v o = v cc C 15 2 low level output current i ol 1.0 3.5 a v o = v ee + 2.5 5, 6, 18 5 4.0 a v o = v ee + 15 2 high level output voltage v oh v cc -4 v cc -3 v i o = -100 ma 1, 3, 19 6, 7 low level output voltage v ol 0.1 0.5 v i o = 100 ma 4, 6, 20 high level supply current i cch 3.0 5.0 ma output open, i f = 7 to 16 ma 7, 8 low level supply current i ccl 3.0 5.0 ma output open, v f = -3.0 to +0.8 v threshold input current low to high i flh 3.5 8.0 ma i o = 0 ma, v o > 5 v 9, 15, 21 threshold input voltage high to low v fhl 0.8 v input forward voltage v f 1.2 1.6 1.95 v i f = 10 ma 16 temperature coefcient of input forward voltage v f /t a -1.3 mv/c input reverse breakdown voltage bv r 5 v i r = 100 a input capacitance c in 75 pf f = 1 mhz, v f = 0 v uvlo threshold v uvlo+ 11.0 12.3 13.5 v v o > 5 v, i f = 10 ma 22, 28 v uvlo- 9.5 10.7 12.0 uvlo hysteresis uvlo hys 1.6 tablef6.f switching specifcations (ac) unless otherwise noted, all typical values are at t a = 25c, v cc - v ee = 30 v, v ee = ground; all minimum/maximum speci - fcations are at recommended operating conditions (t a = -40 to 100c, i f(on) = 10 to 16 ma, v f(off) = -3.6 to 0.8 v, v cc = 15 to 30 v, v ee = ground). parameter symbol min. typ. max. units testfconditions fig. note propagation delay time to high output level t plh 0.10 0.30 0.50 s r g = 10 f, c g = 10 nf, f = 10 khz , duty cycle = 50%, i f = 10 ma, v cc = 30 v 10, 11, 12, 13, 14, 23 14 propagation delay time to low output level t phl 0.10 0.30 0.50 s pulse width distortion pwd 0.30 s 15 propagation delay diference between any two parts pdd (t phl - t plh ) 0.35 s 35, 36 10 rise time t r 0.1 s 23 fall time t f 0.1 s uvlo to turn on delay t uvlo,on 0.8 s v o > 5 v, i f = 10 ma 22 uvlo to turn of delay t uvlo,off 0.6 s v o < 5 v, i f = 10 ma output high level common mode transient immunity |cm h | 15 30 kv/s t a = 25c, i f = 10 to 16 ma, v cm = 1500 v, v cc = 30 v 24 11, 12 output low level common mode transient immunity |cm l | 15 30 kv/s t a = 25c, v f = 0 v, v cm = 1500 v, v cc = 30 v 11, 13
 tablef7.fpackagefcharacteristics unless otherwise noted, all typical values are at t a = 25c; all minimum/maximum specifcations are at recommended operating conditions. parameter symbol min. typ. max. units testfconditions fig. note input-output momentary withstand voltage* v iso 5000 v rms rh < 50%, t = 1 min., t a = 25c 8, 9 input-output resistance r i-o 10 12 10 13 f v i-o = 500 v dc , t a = 25c 9 10 11 v i-o = 500 v dc , t a = 100c input-output capacitance c i-o 0.5 0.6 pf f =1 mhz led-to-ambient thermal resistance la see thermal model section c/w see thermal model in application notes section 29, 30, 31 led-to-detector thermal resistance ld detector-to-ambient thermal resistance da * the input-output momentary withstand voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. for the continuous voltage rating, refer to your equipment level safety specifcation or avago technologies application note 1074 entitled optocoupler input-output endurance voltage. notes: 1. derate linearly above 70 c free-air temperature at a rate of 0.3 ma/ c. 2. maximum pulse width = 10 s. this value is intended to allow for component tolerances for designs with i o peak minimum = 4.0 a. see applications section for additional details on limiting i oh peak. 3. derate linearly above 70 c free-air temperature at a rate of 4.8 ma/ c. 4. derate linearly above 70 c free-air temperature at a rate of 5.4 ma/ c. 5. maximum pulse width = 50 s. 6. in this test v oh is measured with a dc load current. when driving capacitive loads v oh will approach v cc as i oh approaches zero amps. 7. maximum pulse width = 1 ms. 8. in accordance with ul1577, each optocoupler is proof tested by applying an insulation test voltage 6000 vrms for 1 second (leakage detection current limit, i i-o 5 a). 9. device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together. 10. the diference between tphl and t plh between any two ACNW3190 parts under the same test condition. 11. pins 1 and 4 need to be connected to led common. 12. common mode transient immunity in the high state is the maximum tolerable dvcm/dt of the common mode pulse, vcm, to assure that the output will remain in the high state (i.e., v o > 15.0 v). 13. common mode transient immunity in a low state is the maximum tolerable dvcm/dt of the common mode pulse, vcm, to assure that the output will remain in a low state (i.e., v o < 1.0 v). 14. this load condition approximates the gate load of a 1200 v/100a igbt. 15. pulse width distortion (pwd) is defned as |tphl-tplh| for any given device.
 figuref1.fv oh fvs.ftemperature figuref2.fi oh fvs.ftemperature figuref3.fv oh fvs.fi oh figuref4.fv ol fvs.ftemperature figuref5.fi ol fvs.ftemperature figuref6.fv ol fvs.fi ol . ( v o h ? v c c ) ? h i g h o u t p u t v o l t a g e d r o p - v i o h ? o u t p u t h i g h c u r r e n t ? a - 6 - 5 - 4 - 3 - 2 - 1 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 - 4 0 c 2 5 c 1 0 0 c 0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 v o l ? o u t p u t l o w v o l t a g e ? v t a - t e m p e r a t u r e - c - 4 - 3 - 2 - 1 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 ( v o h ? v c c ) ? h i g h o u t p u t v o l t a g e d r o p - v t a - t e m p e r a t u r e - c 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 i o h - o u t p u t h i g h c u r r e n t - a t a - t e m p e r a t u r e - c v o l ? o u t p u t l o w v o l t a g e ? v 2 3 4 5 6 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 i o l ? o u t p u t l o w c u r r e n t - a i o l ? o u t p u t l o w c u r r e n t - a 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 0 1 2 3 4 5 6 7 - 4 0 c 2 5 c 1 0 0 c t a - t e m p e r a t u r e - c
10 figuref7.fi cc fvs.ftemperature figuref8.fi cc fvs.fv cc figuref9.fi flh fvs.ftemperature figuref10.fpropagationfdelayfvs.fv cc figuref11.fpropagationfdelayfvs.fi f figuref12.fpropagationfdelayfvs.ftemperature 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 i c c h i c c l i c c ? s u p p l y c u r r e n t - m a i c c ? s u p p l y c u r r e n t - m a t a ? t e m p e r a t u r e ? c 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 1 0 1 5 2 0 2 5 3 0 i c c h i c c l v c c ? s u p p l y v o l t a g e - v t a ? t e m p e r a t u r e - c 0 1 2 3 4 5 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 i f l h ? l o w t o h i g h c u r r e n t t h r e s h o l d ? m a 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 1 5 2 0 2 5 3 0 t p h l t p l h t p ? p r o p a g a t i o n d e l a y - n s v c c ? s u p p l y v o l t a g e - v t a ? t e m p e r a t u r e - c t p ? p r o p a g a t i o n d e l a y - n s 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 8 1 0 1 2 1 4 1 6 t p h l t p l h i f ? f o r w a r d l e d c u r r e n t - m a 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 t p h l t p l h t p ? p r o p a g a t i o n d e l a y - n s
11 figuref13.fpropagationfdelayfvs.frg figuref14.fpropagationfdelayfvs.fcg figuref15.ftransferfcharacteristics figuref16.finputfcurrentfvs.fforwardfvoltage t p ? p r o p a g a t i o n d e l a y ? n s r g ? s e r i e s l o a d r e s i s t a n c e ? ? c g ? l o a d c a p a c i t a n c e - n f t p ? p r o p a g a t i o n d e l a y ? n s 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 0 1 0 2 0 3 0 4 0 5 0 t p h l t p l h 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 0 2 0 4 0 6 0 8 0 1 0 0 t p h l t p l h 0 5 1 0 1 5 2 0 2 5 3 0 0 1 2 3 4 5 v o l ? o u t p u t l o w v o l t a g e ? v i f ? f o w a r d l e d c u r r e n t - m a v f ? f o r w a r d v o l t a g e ? v o l t s 1 . 2 1 . 3 1 . 4 1 . 5 i f ? f o r w a r d c u r r e n t ? m a 1 . 7 1 . 6 1 . 0 i f + t a = 2 5 c ? v f 0 . 1 0 . 0 1 0 . 0 0 1 1 0 1 0 0 1 0 0 0
1 figuref17.fi oh ftestfcircuit 0.1 f v cc = 15 to 30 v 1 3 i f = 7 to ? 16 ma + C 2 4 8 6 7 5 + C 4 v i oh 0.1 f v cc = 15 to 30 v 1 3 + ? 2 4 8 6 7 5 2.5 v i ol + ? figuref18.fi ol ftestfcircuit 0.1 f v cc = 15 to 30 v 1 3 i f = 7 to 16 ma + ? 2 4 8 6 7 5 100 ma v oh figuref19.fv oh ftestfcircuit 0.1 f v cc = 15 ? to 30 v 1 3 + C 2 4 8 6 7 5 100 ma ? v ol figuref20.fv ol ftestfcircuit 0.1 f v cc = 15 to 30 v 1 3 i f + ? 2 4 8 6 7 5 v o > 5 v figuref21.fi flh ftestfcircuit figuref22.fuvloftestfcircuit 0.1 f 1 3 + ? 2 4 8 6 7 5 v o > 5 v v cc i f = 10 ma
1 0.1 f v cc = 15 ? to 30 v 10 1 3 i f = 7 to 16 ma v o + C + C 2 4 8 6 7 5 10 khz ? 50% duty ? cycle 500 10 nf i f v ou t t ph l t plh t f t r 10% 50% 90% figuref23.ft plh ,ft phl ,ft r ,fandft f ftestfcircuitfandfwaveforms 0.1 f v cc = 30 v 1 3 i f v o + ? + ? 2 4 8 6 7 5 a + ? b v cm = 1500 v 5 v v cm t 0 v v o switch at b: i f = 0 m a v o switch at a: i f = 10 ma v ol v oh t v cm v t = figuref24.fcmrftestfcircuitfandfwaveforms 5v + _ + _ v cc = 15v 0.1f 270 r g q1 q2 + v ce - r pu ll- down + hvdc -hvdc 3-phase ac + v ce - 1 3 2 4 8 6 7 5 figuref25.frecommendedfledfdrivefandfapplicationfcircuit application notes figure 25 and 26 show two recommended application circuits. figure 25 show a single power supply gate driver using the drivers maximum v ol value of 0.5v. figure 26 show a dual power supply gate driver circuit which is applicable for higher power igbt driving due to the existence of higher miller capacitance in these igbts. for high side bootstrap driving, note that the bypass capacitor of 0.1f in parallel with 10f or above to be connected across vcc and vee is important to deliver high peak output current.
1 + _ v cc = 15 v 0.1f r g q1 q2 + v ce - r pu ll-d ow n + hvdc -hvdc 3-phase ac + v ce - + _ v ee = -5 v 5v + _ 270 1 3 2 4 8 6 7 5 figuref26.fACNW3190typicalfapplicationfcircuitffwithfnegativefigbtfgatefdrivef selecting the gate resistor (rg) to minimize igbt switch - ing losses. step 1: calculate rg minimum from the i ol peak specifcation the igbt and rg in figure 26 can be analyzed as a simple rc circuit with a voltage supplied by the ACNW3190. the operating temperature is 100c. ol pe ak ol ee cc i v v v rg ) ( ? ? a v v v 4 ) 5 . 3 5 15 ( ? + = 3 . 4 the vol value of 3.5v in the previous equation is a con - servative value of vol at the peak current of 4.0a (see figure 6). at lower rg values the voltage supplied by the ACNW3190 is not an ideal voltage step. this results in lower peak currents (more margin) than predicted by this analysis. when negative gate drive is not used, v ee in the previous equation is equal to zero volts. step 2: check the ACNW3190 power dissipation and increase rg if necessary. the ACNW3190 total power dissipation (pt) is equal to the sum of the emitter power (pe) and the output power (po): p t = p e + p o p e = i f * v f * duty cycle p o = p o(bias) + p o (switching) = i cc * (v cc - v ee ) + e sw (r g , q g ) * f for the circuit in figure 26 with i f (worst case) = 16 ma, rg = 4.3, max duty cycle = 80%, qg = 1000 nc, f = 15 khz and t a max = 85 c: p e = 16 ma * 1.95v * 0.8 = 25 mw p o = 3.25 ma * 20 v + 13j * 15 khz = 65 mw + 195 mw = 260 mw < 728 mw (p o(max) @ 85 c = 800 mw-15c*4.8 mw/c) the value of 3.25 ma for icc in the previous equation was obtained by derating the icc max of 5 ma to icc max at 100c (see figure 7). the above computation shows that the power dissipation is within the specifed limits. however, designers should verify that the thermal limits have not been violated by using the thermal model provided in this datasheet. this thermal model obtained based on jedec specifcation. pefparameterf descriptionf i f led current v f led on voltage duty cycle maximum led duty cycle p o fparameterf descriptionf i cc supply current v cc positive supply voltage v ee negative supply voltage e sw (rg,qg) energy dissipated in the hcpl-3120 for each igbt switching cycle (see figure 27)
15 figuref27.fenergyfdissipatedfinfthefacwn3190fforfeachfigbtfswitchingfcycle under voltage lockout feature the ACNW3190 contains an under voltage lockout (uvlo) feature that is designed to protect the igbt under fault conditions which cause the ACNW3190 supply voltage (equivalent to the fully-charged igbt gate voltage) to drop below a level necessary to keep the igbt in a low re - sistance state. when the ACNW3190 output is in the high state and the supply voltage drops below the ACNW3190 v uvloC threshold (9.5 < v uvloC < 12.0) the optocoupler output will go into the low state with a typical delay, uvlo turn of delay, of 0.6 s. when the ACNW3190 output is in the low state and the supply voltage rises above the ACNW3190 v uvlo+ threshold (11.0 < v uvlo+ < 13.5) the optocoupler output will go into the high state (assumes led is on) with a typical delay, uvlo turn on delay of 0.8 s. v o ? output voltage ? v 0 0 (v cc - v ee ) ? supply voltage ? v 10 5 14 10 15 2 20 6 8 4 12 (12.3, 10.8) (10.7, 9.2) (10.7, 0.1) (12.3, 0.1) figuref28.funderfvoltageflockfout thermal model introduction for application which requires an output gate current more than 2a, adequate pcb pad heat-sink must be provided to dissipate the power loss in the package. failure to provide proper heat dissipation will potentially damage the gate drive after pro-long usage. this thermal model allows designer to compute the temperature of the led and detector. defnitions 1:thermal impedance from led junction to ambient 2:thermal impedance from led to detector (output ic) 3:thermal impedance from detector (output ic) junction to ambient ambient temperature: measured approximately 1.25 cm above the optocoupler, with no forced air. description this thermal model assumes that an 8-pin single-channel plastic package optocoupler is soldered into a 7.62 cm x 7.62 cm printed circuit board (pcb). the temperature at the led and detector junctions of the optocoupler can be calculated using the equations below. ?tea = a11*pe + a12*pd ?tda = a21*pe + a22*pd where, ?tea = temperature diference between ambient and led ?tda = temperature diference between ambient and detector pe = power dissipation from led pd = power dissipation from detector a11, a12, a21, a22 thermal coefcients (units in c/w) are functions of the thermal impedances 1, 2, 3 (see note 2). tablef1.fthermalfmodel-bfcoefcientfdataf(unitsfinfc/w) sf(cm)f a11f a12,fa21f a22f 1 218.9 39.31 55.3 2 200.6 29.8 45 4 198 23.59 41.7 jedecfspecifcations fa11f a12,fa21f a22f low k board 254 50.3 66.8 high k board 151.2 16.72 39.06 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 0 10 20 30 40 50 energy per cycle [ j ] 100 nc 500 nc 1000 nc rg [ ? ]
figuref29.fthermalfmodel-bfdiagram figuref30.fevaluationfthermalfboardfdesign figuref31.fthermalfcoefcientfplotfagainstfs notes: 1. maximum junction temperature for above parts: 150 c. 2. a11 = 1 || (2+ 3); a12 = a21 = (1 2) / (1+ 2 + 3); a22 = 3|| (2 + 3). 0 50 100 150 200 250 300 0 2 4 6 s (cm) thermal coefficient a11 a12/a21 a22 for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies limited in the united states and other countries. data subject to change. copyright ? 005-00 avago technologies limited. all rights reserved. av0 -05 en - june 1, 00


▲Up To Search▲   

 
Price & Availability of ACNW3190

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X